HANG TIME-MAXIMUM JUMP HEIGHT-FILL-IN

WHAT IS HANG TIME?

thang is measured from the instant the basketball player's feet leave the ground until the time the player's feet return to the ground.

To calculate your HANG TIME from your measured MAXIMUM JUMP HEIGHT Complete the steps below to determine your stretching reach and then your jumping reach

1- Stand sideways against the tape measure with both feet on the ground and reach up with one hand, stretch and mark the highest point on the tape

STRETCHING REACH HEIGHT = _____ INCHES

2- Next, jump up vertically as high as you can and mark the highest point you can reach on the tape.

JUMPING REACH HEIGHT = INCHES

3- Subtract measurement in step 1 from the measurement in step 2. This is the height your feet are above the floor.

MAXIMUM JUMP HEIGHT h_{max} = _____ INCHES

Put the height h_{max} you get from step 3 into the Equation below. Use a calculator to get the Square Root.

$$t_{hang} = \sqrt{(h_{max}/48)}$$
 seconds=_____ seconds

FROM THE GRAPH BELOW ONE CAN ESTIMATE HANG TIME FROM ANY JUMP HEIGHT

HOW HIGH CAN YOU JUMP AND WHAT WOULD BE YOUR HANG TIME ON OTHER BODIES IN OUR SOLAR SYSTEM?

Your measured JUMP HEIGHT is	: inches
Your calculated HANG TIME is:	seconds

From other side:

The surace gravity on other bodies in our solar system is different than that of the Earth. The g-factor is the ratio of the surface gravity elewhere compared to the surface gavity on Earth.

Then the JUMP HEIGHT on other bodies = JUMP HEIGHT on Earth/(g-factor)

And the HANG TIME on other bodies = HANG TIME on Earth/(g-factor)

Member	of Solar	How High Can	How Long Will	How High Could	How Long Will
System and Their		Michael Jordan Jump	Michael Jordan	You Jump from Each	You
Surface Gravity		From Each Surface?	Hang in the Air?	Surface? Your	Hang in the Air
	g-factor	Jump Height/(g-	Hang time/(g-	Jump Height/(g-	Hang time/(g-
		factor)	factor)	factor)	factor)
Earth	1.00	Say 48 inches	1.00 seconds		
Sun	27.90	1.72 inches	0.036 sec		
Mercury	0.38	126.3 (Over 10 feet)	2.63 sec		
Venus	0.91	53.75 inches	1.10 sec		
Mars	0.38	126.3 (Over 10 feet)	2.63 sec		
Jupiter	2.36	20.34 inches	0.42 sec		
Saturn	0.92	52.17 inches	1.09 sec		
Uranus	0.89	53.93 inches	1.12 sec		
Neptune	1.12	42.68 inches	0.89 sec		
Pluto	0.06	800 (Over 66 feet)	16.67 sec		
Moon	0.16	300 (25 feet)	6.25 sec		

© http://www.sae-ny.org dunk@scienceartsengagementny.org